# [−]Struct lumol::energy::Mie

pub struct Mie { /* fields omitted */ }

Mie potential.

This is a generalization of the Lennard-Jones potential with arbitrary (floating point) exponents.

$$V(r) = \epsilon \frac{n}{n - m} \frac{n}{m}^\frac{m}{n - m} \left[\left(\frac \sigma r \right)^n - \left(\frac \sigma r \right)^m \right]$$

where $\epsilon$ is an energetic constant, $\sigma$ is a distance constant, and $n$, $m$ are the repulsive and attractive exponents, respectively.

# Restrictions

$n$ has to be larger than $m$

For $m$ smaller than 3.0, there is no analytic tail correction and the energy and force contributions will be set to zero.

# Examples

let potential = Mie::new(/*sigma*/ 2.0, /*epsilon*/ 10.0, /*n*/ 12.0, /*m*/ 6.0);
assert_eq!(potential.energy(2.0), 0.0);
assert!(f64::abs(potential.energy(3.0) + 3.203365942785746) < 1e-8);

assert_eq!(potential.force(2.0), 120.0);

## Implementations

### impl Mie

#### pub fn new(sigma: f64, epsilon: f64, n: f64, m: f64) -> Mie

Return Mie potential.

## Blanket Implementations

### impl<T> Pointable for T

#### type Init = T

The type for initializers.

### impl<T> ToOwned for T where    T: Clone, [src]

#### type Owned = T

The resulting type after obtaining ownership.

### impl<T, U> TryFrom<U> for T where    U: Into<T>, [src]

#### type Error = Infallible

The type returned in the event of a conversion error.

### impl<T, U> TryInto<U> for T where    U: TryFrom<T>, [src]

#### type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.